1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
//! Representations of Falcon instruction operands.

use std::fmt;

use num_traits::{PrimInt, Signed, Unsigned};

fn display_signed_hex<I>(immediate: &I, f: &mut fmt::Formatter<'_>) -> fmt::Result
where
    I: fmt::LowerHex + PrimInt + Signed,
{
    let sign = if immediate.is_negative() { "-" } else { "" };
    write!(f, "{}{:#x}", sign, immediate.abs())
}

fn display_unsigned_hex<I>(immediate: &I, f: &mut fmt::Formatter<'_>) -> fmt::Result
where
    I: fmt::LowerHex + PrimInt + Unsigned,
{
    write!(f, "{:#x}", immediate)
}

/// A Falcon CPU register.
///
/// The Falcon utilizes separate register files for 16 general-purpose registers
/// and another 16 special-purpose registers. This structure stores information
/// on the type of register and the register index itself.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct Register(pub RegisterKind, pub usize);

impl fmt::Display for Register {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self.0 {
            RegisterKind::Gpr => write!(f, "$r{}", self.1),
            RegisterKind::Spr => write!(f, "${}", get_spr_name(self.1)),
        }
    }
}

/// Types of CPU registers supported by the Falcon.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum RegisterKind {
    /// A general-purpose CPU register.
    Gpr,
    /// A special-purpose CPU register.
    Spr,
}

/// Gets the qualified name of a special-purpose register based on the given
/// register index.
#[rustfmt::skip]
pub fn get_spr_name(value: usize) -> &'static str {
    [
        /* 0x0 */ "iv0",
        /* 0x1 */ "iv1",
        /* 0x2 */ "iv2",
        /* 0x3 */ "ev",
        /* 0x4 */ "sp",
        /* 0x5 */ "pc",
        /* 0x6 */ "imb",
        /* 0x7 */ "dmb",
        /* 0x8 */ "csw",
        /* 0x9 */ "ccr",
        /* 0xA */ "sec",
        /* 0xB */ "ctx",
        /* 0xC */ "exci",
        /* 0xD */ "sec1",
        /* 0xE */ "imb1",
        /* 0xF */ "dmb1",
    ][value]
}

/// Gets the qualified name of a flag bit in the `$flags` register based on the
/// given bit index.
#[rustfmt::skip]
pub fn get_flag_name(value: usize) -> Option<&'static str> {
    [
        /* 0x00 */ Some("p0"),
        /* 0x01 */ Some("p1"),
        /* 0x02 */ Some("p2"),
        /* 0x03 */ Some("p3"),
        /* 0x04 */ Some("p4"),
        /* 0x05 */ Some("p5"),
        /* 0x06 */ Some("p6"),
        /* 0x07 */ Some("p7"),
        /* 0x08 */ Some("c"),
        /* 0x09 */ Some("o"),
        /* 0x0A */ Some("s"),
        /* 0x0B */ Some("z"),
        /* 0x0C */ None,
        /* 0x0D */ None,
        /* 0x0E */ None,
        /* 0x0F */ None,
        /* 0x10 */ Some("ie0"),
        /* 0x11 */ Some("ie1"),
        /* 0x12 */ Some("ie2"),
        /* 0x13 */ None,
        /* 0x14 */ Some("is0"),
        /* 0x15 */ Some("is1"),
        /* 0x16 */ Some("is2"),
        /* 0x17 */ None,
        /* 0x18 */ Some("ea"),
        /* 0x19 */ None,
        /* 0x1A */ None,
        /* 0x1B */ None,
        /* 0x1C */ None,
        /* 0x1D */ None,
        /* 0x1E */ None,
        /* 0x1F */ None,
    ][value]
}

/// The used Falcon memory spaces in SRAM.
///
/// Falcon follows the Harvard computer model by utilizing separate memory spaces
/// for code and data. The *IMEM (instruction memory)* utilizes primitive paging
/// and contains the code that is executed.
///
/// The *DMEM (data memory)* on the other hand stores local variables and the stack.
/// Unaligned access to it leads to data corruption.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum MemorySpace {
    /// The Falcon I/O space.
    ///
    /// Since IMEM cannot be accessed from any opcodes, we don't need to cover it here.
    Io,
    /// The DMEM segment.
    DMem,
}

impl fmt::Display for MemorySpace {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let fmt = match self {
            MemorySpace::Io => "I",
            MemorySpace::DMem => "D",
        };

        write!(f, "{}", fmt)
    }
}

/// A direct memory access to an address in a [`MemorySpace`].
///
/// Some instructions directly access an address in a specific memory space. An
/// address can be described in the following formats:
///
/// - Access through a single register holding the address: `[$reg]`
/// - Access through two registers for base address and scaled offset: `[$reg1 + $reg2 * scale]`
/// - Access through a register for base address and an immediate for offset: `[$reg + imm]`
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum MemoryAccess {
    /// A form where the memory address is derived from a single register: `[$reg]`
    Reg {
        /// The memory space which should be accessed.
        space: MemorySpace,
        /// The register which holds the address to access.
        base: Register,
    },
    /// A form where the memory address is derived from two registers: `[$reg1 + $reg2 * scale]`
    RegReg {
        /// The memory space which should be accessed.
        space: MemorySpace,
        /// The register which holds the memory base address.
        base: Register,
        /// The register that holds the offset to the base address.
        offset: Register,
        /// A constant scale for the offset value. Determined by the instruction
        /// form.
        scale: u8,
    },
    /// A form where the memory address is derived from a register and an immediate: `[$reg + imm]`
    RegImm {
        /// The memory space which should be accessed.
        space: MemorySpace,
        /// The register which holds the memory base address.
        base: Register,
        /// An offset of the base address stored in an immediate.
        offset: u32,
    },
}

impl fmt::Display for MemoryAccess {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            MemoryAccess::Reg { space, base } => write!(f, "{}[{}]", space, base),
            MemoryAccess::RegReg {
                space,
                base,
                offset,
                scale,
            } => match scale {
                0 => write!(f, "{}[{}]", space, base),
                1 => write!(f, "{}[{} + {}]", space, base, offset),
                _ => write!(f, "{}[{} + {} * {}]", space, base, offset, scale),
            },
            MemoryAccess::RegImm {
                space,
                base,
                offset,
            } => match offset {
                0 => write!(f, "{}[{}]", space, base),
                _ => write!(f, "{}[{} + {:#02x}]", space, base, offset),
            },
        }
    }
}

/// An operand of a Falcon assembly [`crate::Instruction`].
///
/// Operands usually denote CPU registers, immediates, and memory addressing for
/// the instruction to operate on. A `Vec` of instruction operands can be obtained
/// for every instruction individually through [`crate::Instruction::operands`]. It is
/// at the user's responsibility to correctly interpret and process the operands.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Operand {
    /// A Falcon CPU register operand.
    Register(Register),
    /// An immediate operand that represents a specific bit of the `$csw` register.
    Flag(u8),
    /// A signed immediate.
    Immediate(i32),
    /// An unsigned immediate.
    UnsignedImmediate(u32),
    /// An immediate operand that denotes a bitfield starting from the lower bit index
    /// and covering a specific amount of bits.
    Bitfield(u32, u32),
    /// A direct access to a memory space at a given address.
    Memory(MemoryAccess),
}

impl fmt::Display for Operand {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Operand::Register(reg) => write!(f, "{}", reg),
            Operand::Flag(flag) => write!(f, "${}", get_flag_name(*flag as usize).unwrap_or("unk")),
            Operand::Immediate(val) => display_signed_hex(val, f),
            Operand::UnsignedImmediate(val) => display_unsigned_hex(val, f),
            Operand::Bitfield(i, n) => write!(f, "{}:{}", i, i + n),
            Operand::Memory(mem) => write!(f, "{}", mem),
        }
    }
}