1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
//! Implementation of the Falcon DMA engine.

use std::convert::TryInto;
use std::ptr;

use crate::cpu::Cpu;

/// Supported request modes that the DMA engine can process.
#[derive(Debug, PartialEq)]
pub enum RequestMode {
    /// A DMA request to load Falcon code from external memory.
    CodeLoad,
    /// A DMA request to load Falcon data from external memory.
    DataLoad,
    /// A DMA request to store Falcon data in external memory.
    DataStore,
}

/// A Falcon DMA request to perform a code/data transfer.
// TODO: Figure out the missing secret flag.
#[derive(Debug)]
pub struct Request {
    pub mode: RequestMode,
    external_port: u8,
    external_base: u32,
    external_offset: u32,
    local_address: u16,
    size: Option<u8>,
    secret: Option<bool>,
}

impl Request {
    /// Constructs a new DMA request.
    pub fn new(
        mode: RequestMode,
        external_port: u8,
        external_base: u32,
        external_offset: u32,
        local_address: u16,
        size: Option<u8>,
        secret: Option<bool>,
    ) -> Self {
        Request {
            mode,
            external_port,
            external_base,
            external_offset,
            local_address,
            size,
            secret,
        }
    }
    /// Gets the port and the start address of the external party for the xfer
    /// operation.
    pub fn external_party(&self) -> (u8, usize) {
        // The external offset always has to be aligned to the xfer size.
        assert_eq!(self.external_offset % self.xfer_size() as u32, 0);

        (
            self.external_port,
            ((self.external_base << 8) + self.external_offset) as usize,
        )
    }

    /// Gets the virtual destination address for code xfers.
    pub fn vaddr(&self) -> u32 {
        // The external offset always has to be aligned to the xfer size.
        assert_eq!(self.external_offset % self.xfer_size() as u32, 0);

        // Since the external offset also represents the virtual address
        // to be used in Falcon IMEM, return it as such.
        self.external_offset
    }

    /// The physical start address of the local party for the xfer operation.
    pub fn local_party(&self) -> u16 {
        // The local address always has to be aligned to the xfer size.
        assert_eq!(self.local_address % self.xfer_size() as u16, 0);

        self.local_address
    }

    /// Gets the xfer size that indicates how much data to transfer.
    ///
    /// The actual amount of bytes to copy can be obtained through
    /// [`Request::xfer_data_size`].
    pub fn xfer_size(&self) -> u8 {
        if self.mode == RequestMode::CodeLoad {
            // For code xfers, the size is effectively always 6.
            6
        } else {
            // For data xfers, the size must be within a 0..=6
            // range and cannot be empty.
            let value = self.size.unwrap();
            assert!(value <= 6);

            value
        }
    }

    /// Gets the amount of bytes to copy in the xfer.
    pub fn xfer_data_size(&self) -> usize {
        (4 << self.xfer_size()) as usize
    }

    /// Checks whether the xfer is enhanced by cryptographic functionality.
    pub fn secret(&self) -> bool {
        if self.mode == RequestMode::CodeLoad {
            // In case of a code load, the secret flag may or may not be set.
            self.secret.unwrap()
        } else {
            // For data transfers, secret xfers are irrelevant, thus always
            // being set to `false`.
            false
        }
    }
}

/// Representation of the Falcon DMA engine.
///
/// The internal controller allows for asynchronous copies between Falcon DMEM/IMEM
/// and external memory, issued through DMA [`Request`]s.
// TODO: Make DMA engine capable of processing request asynchronously in separate threads.
#[derive(Debug)]
pub struct Engine {
    /// A queue of DMA [`Request`]s to be processed by the engine.
    queue: Vec<Request>,
}

impl Engine {
    /// Creates a new instance of the DMA engine.
    pub fn new() -> Self {
        Engine { queue: Vec::new() }
    }

    /// Checks whether the DMA engine is currently busy processing
    /// requests.
    pub fn is_busy(&self) -> bool {
        // TODO
        false
    }

    /// Enqueues a new [`Request`] in the DMA queue.
    ///
    /// # Safety
    ///
    /// Due to raw pointer arithmetic used when processing a request,
    /// the user must ensure that all the memory addresses and offsets
    /// denoted in a request are valid and aligned, otherwise undefined
    /// behavior will be triggered.
    pub unsafe fn enqueue(&mut self, request: Request, cpu: &mut Cpu) {
        self.queue.push(request);

        // TODO
        self.process_request(cpu);
    }

    /// Executes a DMA request.
    unsafe fn process_request(&mut self, cpu: &mut Cpu) {
        if let Some(request) = self.queue.pop() {
            match request.mode {
                RequestMode::CodeLoad => {
                    let destination = request.local_party();
                    let (_, source) = request.external_party();
                    let size = request.xfer_data_size();

                    // TODO: Add support for secret xfers.

                    // Copy the code to a vector for more idiomatic interaction with it.
                    let mut data = Vec::with_capacity(size);
                    ptr::copy_nonoverlapping(source as *const u8, data.as_mut_ptr(), size);

                    for (index, chunk) in data.chunks(4).enumerate() {
                        cpu.upload_code(
                            destination + (index << 2) as u16,
                            request.vaddr(),
                            u32::from_le_bytes(chunk.try_into().unwrap()),
                        )
                    }
                }
                RequestMode::DataLoad => todo!("Implement this"),
                RequestMode::DataStore => todo!("Implement this"),
            }
        }
    }
}