1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
//! Provide helpers for making ioctl system calls.
//!
//! This library is pretty low-level and messy. `ioctl` is not fun.
//!
//! What is an `ioctl`?
//! ===================
//!
//! The `ioctl` syscall is the grab-bag syscall on POSIX systems. Don't want to add a new
//! syscall? Make it an `ioctl`! `ioctl` refers to both the syscall, and the commands that can be
//! sent with it. `ioctl` stands for "IO control", and the commands are always sent to a file
//! descriptor.
//!
//! It is common to see `ioctl`s used for the following purposes:
//!
//! * Provide read/write access to out-of-band data related to a device such as configuration
//! (for instance, setting serial port options)
//! * Provide a mechanism for performing full-duplex data transfers (for instance, xfer on SPI
//! devices).
//! * Provide access to control functions on a device (for example, on Linux you can send
//! commands like pause, resume, and eject to the CDROM device.
//! * Do whatever else the device driver creator thought made most sense.
//!
//! `ioctl`s are synchronous system calls and are similar to read and write calls in that regard.
//! They operate on file descriptors and have an identifier that specifies what the ioctl is.
//! Additionally they may read or write data and therefore need to pass along a data pointer.
//! Besides the semantics of the ioctls being confusing, the generation of this identifer can also
//! be difficult.
//!
//! Historically `ioctl` numbers were arbitrary hard-coded values. In Linux (before 2.6) and some
//! unices this has changed to a more-ordered system where the ioctl numbers are partitioned into
//! subcomponents (For linux this is documented in
//! [`Documentation/ioctl/ioctl-number.rst`](http://elixir.free-electrons.com/linux/latest/source/Documentation/ioctl/ioctl-number.rst)):
//!
//! * Number: The actual ioctl ID
//! * Type: A grouping of ioctls for a common purpose or driver
//! * Size: The size in bytes of the data that will be transferred
//! * Direction: Whether there is any data and if it's read, write, or both
//!
//! Newer drivers should not generate complete integer identifiers for their `ioctl`s instead
//! preferring to use the 4 components above to generate the final ioctl identifier. Because of
//! how old `ioctl`s are, however, there are many hard-coded `ioctl` identifiers. These are
//! commonly referred to as "bad" in `ioctl` documentation.
//!
//! Defining `ioctl`s
//! =================
//!
//! This library provides several `ioctl_*!` macros for binding `ioctl`s. These generate public
//! unsafe functions that can then be used for calling the ioctl. This macro has a few different
//! ways it can be used depending on the specific ioctl you're working with.
//!
//! A simple `ioctl` is `SPI_IOC_RD_MODE`. This ioctl works with the SPI interface on Linux. This
//! specific `ioctl` reads the mode of the SPI device as a `u8`. It's declared in
//! `/include/uapi/linux/spi/spidev.h` as `_IOR(SPI_IOC_MAGIC, 1, __u8)`. Since it uses the `_IOR`
//! macro, we know it's a `read` ioctl and can use the `ioctl_read!` macro as follows:
//!
//! ```
//! # #[macro_use] extern crate nix;
//! const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h
//! const SPI_IOC_TYPE_MODE: u8 = 1;
//! ioctl_read!(spi_read_mode, SPI_IOC_MAGIC, SPI_IOC_TYPE_MODE, u8);
//! # fn main() {}
//! ```
//!
//! This generates the function:
//!
//! ```
//! # #[macro_use] extern crate nix;
//! # use std::mem;
//! # use nix::{libc, Result};
//! # use nix::errno::Errno;
//! # use nix::libc::c_int as c_int;
//! # const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h
//! # const SPI_IOC_TYPE_MODE: u8 = 1;
//! pub unsafe fn spi_read_mode(fd: c_int, data: *mut u8) -> Result<c_int> {
//! let res = libc::ioctl(fd, request_code_read!(SPI_IOC_MAGIC, SPI_IOC_TYPE_MODE, mem::size_of::<u8>()), data);
//! Errno::result(res)
//! }
//! # fn main() {}
//! ```
//!
//! The return value for the wrapper functions generated by the `ioctl_*!` macros are `nix::Error`s.
//! These are generated by assuming the return value of the ioctl is `-1` on error and everything
//! else is a valid return value. If this is not the case, `Result::map` can be used to map some
//! of the range of "good" values (-Inf..-2, 0..Inf) into a smaller range in a helper function.
//!
//! Writing `ioctl`s generally use pointers as their data source and these should use the
//! `ioctl_write_ptr!`. But in some cases an `int` is passed directly. For these `ioctl`s use the
//! `ioctl_write_int!` macro. This variant does not take a type as the last argument:
//!
//! ```
//! # #[macro_use] extern crate nix;
//! const HCI_IOC_MAGIC: u8 = b'k';
//! const HCI_IOC_HCIDEVUP: u8 = 1;
//! ioctl_write_int!(hci_dev_up, HCI_IOC_MAGIC, HCI_IOC_HCIDEVUP);
//! # fn main() {}
//! ```
//!
//! Some `ioctl`s don't transfer any data, and those should use `ioctl_none!`. This macro
//! doesn't take a type and so it is declared similar to the `write_int` variant shown above.
//!
//! The mode for a given `ioctl` should be clear from the documentation if it has good
//! documentation. Otherwise it will be clear based on the macro used to generate the `ioctl`
//! number where `_IO`, `_IOR`, `_IOW`, and `_IOWR` map to "none", "read", "write_*", and "readwrite"
//! respectively. To determine the specific `write_` variant to use you'll need to find
//! what the argument type is supposed to be. If it's an `int`, then `write_int` should be used,
//! otherwise it should be a pointer and `write_ptr` should be used. On Linux the
//! [`ioctl_list` man page](http://man7.org/linux/man-pages/man2/ioctl_list.2.html) describes a
//! large number of `ioctl`s and describes their argument data type.
//!
//! Using "bad" `ioctl`s
//! --------------------
//!
//! As mentioned earlier, there are many old `ioctl`s that do not use the newer method of
//! generating `ioctl` numbers and instead use hardcoded values. These can be used with the
//! `ioctl_*_bad!` macros. This naming comes from the Linux kernel which refers to these
//! `ioctl`s as "bad". These are a different variant as they bypass calling the macro that generates
//! the ioctl number and instead use the defined value directly.
//!
//! For example the `TCGETS` `ioctl` reads a `termios` data structure for a given file descriptor.
//! It's defined as `0x5401` in `ioctls.h` on Linux and can be implemented as:
//!
//! ```
//! # #[macro_use] extern crate nix;
//! # #[cfg(any(target_os = "android", target_os = "linux"))]
//! # use nix::libc::TCGETS as TCGETS;
//! # #[cfg(any(target_os = "android", target_os = "linux"))]
//! # use nix::libc::termios as termios;
//! # #[cfg(any(target_os = "android", target_os = "linux"))]
//! ioctl_read_bad!(tcgets, TCGETS, termios);
//! # fn main() {}
//! ```
//!
//! The generated function has the same form as that generated by `ioctl_read!`:
//!
//! ```text
//! pub unsafe fn tcgets(fd: c_int, data: *mut termios) -> Result<c_int>;
//! ```
//!
//! Working with Arrays
//! -------------------
//!
//! Some `ioctl`s work with entire arrays of elements. These are supported by the `ioctl_*_buf`
//! family of macros: `ioctl_read_buf`, `ioctl_write_buf`, and `ioctl_readwrite_buf`. Note that
//! there are no "bad" versions for working with buffers. The generated functions include a `len`
//! argument to specify the number of elements (where the type of each element is specified in the
//! macro).
//!
//! Again looking to the SPI `ioctl`s on Linux for an example, there is a `SPI_IOC_MESSAGE` `ioctl`
//! that queues up multiple SPI messages by writing an entire array of `spi_ioc_transfer` structs.
//! `linux/spi/spidev.h` defines a macro to calculate the `ioctl` number like:
//!
//! ```C
//! #define SPI_IOC_MAGIC 'k'
//! #define SPI_MSGSIZE(N) ...
//! #define SPI_IOC_MESSAGE(N) _IOW(SPI_IOC_MAGIC, 0, char[SPI_MSGSIZE(N)])
//! ```
//!
//! The `SPI_MSGSIZE(N)` calculation is already handled by the `ioctl_*!` macros, so all that's
//! needed to define this `ioctl` is:
//!
//! ```
//! # #[macro_use] extern crate nix;
//! const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h
//! const SPI_IOC_TYPE_MESSAGE: u8 = 0;
//! # pub struct spi_ioc_transfer(u64);
//! ioctl_write_buf!(spi_transfer, SPI_IOC_MAGIC, SPI_IOC_TYPE_MESSAGE, spi_ioc_transfer);
//! # fn main() {}
//! ```
//!
//! This generates a function like:
//!
//! ```
//! # #[macro_use] extern crate nix;
//! # use std::mem;
//! # use nix::{libc, Result};
//! # use nix::errno::Errno;
//! # use nix::libc::c_int as c_int;
//! # const SPI_IOC_MAGIC: u8 = b'k';
//! # const SPI_IOC_TYPE_MESSAGE: u8 = 0;
//! # pub struct spi_ioc_transfer(u64);
//! pub unsafe fn spi_message(fd: c_int, data: &mut [spi_ioc_transfer]) -> Result<c_int> {
//! let res = libc::ioctl(fd,
//! request_code_write!(SPI_IOC_MAGIC, SPI_IOC_TYPE_MESSAGE, data.len() * mem::size_of::<spi_ioc_transfer>()),
//! data);
//! Errno::result(res)
//! }
//! # fn main() {}
//! ```
//!
//! Finding `ioctl` Documentation
//! -----------------------------
//!
//! For Linux, look at your system's headers. For example, `/usr/include/linux/input.h` has a lot
//! of lines defining macros which use `_IO`, `_IOR`, `_IOW`, `_IOC`, and `_IOWR`. Some `ioctl`s are
//! documented directly in the headers defining their constants, but others have more extensive
//! documentation in man pages (like termios' `ioctl`s which are in `tty_ioctl(4)`).
//!
//! Documenting the Generated Functions
//! ===================================
//!
//! In many cases, users will wish for the functions generated by the `ioctl`
//! macro to be public and documented. For this reason, the generated functions
//! are public by default. If you wish to hide the ioctl, you will need to put
//! them in a private module.
//!
//! For documentation, it is possible to use doc comments inside the `ioctl_*!` macros. Here is an
//! example :
//!
//! ```
//! # #[macro_use] extern crate nix;
//! # use nix::libc::c_int;
//! ioctl_read! {
//! /// Make the given terminal the controlling terminal of the calling process. The calling
//! /// process must be a session leader and not have a controlling terminal already. If the
//! /// terminal is already the controlling terminal of a different session group then the
//! /// ioctl will fail with **EPERM**, unless the caller is root (more precisely: has the
//! /// **CAP_SYS_ADMIN** capability) and arg equals 1, in which case the terminal is stolen
//! /// and all processes that had it as controlling terminal lose it.
//! tiocsctty, b't', 19, c_int
//! }
//!
//! # fn main() {}
//! ```
use cfg_if::cfg_if;
#[cfg(any(target_os = "android", target_os = "linux", target_os = "redox"))]
#[macro_use]
mod linux;
#[cfg(any(target_os = "android", target_os = "linux", target_os = "redox"))]
pub use self::linux::*;
#[cfg(any(target_os = "dragonfly",
target_os = "freebsd",
target_os = "ios",
target_os = "macos",
target_os = "netbsd",
target_os = "openbsd"))]
#[macro_use]
mod bsd;
#[cfg(any(target_os = "dragonfly",
target_os = "freebsd",
target_os = "ios",
target_os = "macos",
target_os = "netbsd",
target_os = "openbsd"))]
pub use self::bsd::*;
/// Convert raw ioctl return value to a Nix result
#[macro_export]
#[doc(hidden)]
macro_rules! convert_ioctl_res {
($w:expr) => (
{
$crate::errno::Errno::result($w)
}
);
}
/// Generates a wrapper function for an ioctl that passes no data to the kernel.
///
/// The arguments to this macro are:
///
/// * The function name
/// * The ioctl identifier
/// * The ioctl sequence number
///
/// The generated function has the following signature:
///
/// ```rust,ignore
/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int) -> Result<libc::c_int>
/// ```
///
/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html).
///
/// # Example
///
/// The `videodev2` driver on Linux defines the `log_status` `ioctl` as:
///
/// ```C
/// #define VIDIOC_LOG_STATUS _IO('V', 70)
/// ```
///
/// This can be implemented in Rust like:
///
/// ```no_run
/// # #[macro_use] extern crate nix;
/// ioctl_none!(log_status, b'V', 70);
/// fn main() {}
/// ```
#[macro_export(local_inner_macros)]
macro_rules! ioctl_none {
($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr) => (
$(#[$attr])*
pub unsafe fn $name(fd: $crate::libc::c_int)
-> $crate::Result<$crate::libc::c_int> {
convert_ioctl_res!($crate::libc::ioctl(fd, request_code_none!($ioty, $nr) as $crate::sys::ioctl::ioctl_num_type))
}
)
}
/// Generates a wrapper function for a "bad" ioctl that passes no data to the kernel.
///
/// The arguments to this macro are:
///
/// * The function name
/// * The ioctl request code
///
/// The generated function has the following signature:
///
/// ```rust,ignore
/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int) -> Result<libc::c_int>
/// ```
///
/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html).
///
/// # Example
///
/// ```no_run
/// # #[macro_use] extern crate nix;
/// # use libc::TIOCNXCL;
/// # use std::fs::File;
/// # use std::os::unix::io::AsRawFd;
/// ioctl_none_bad!(tiocnxcl, TIOCNXCL);
/// fn main() {
/// let file = File::open("/dev/ttyUSB0").unwrap();
/// unsafe { tiocnxcl(file.as_raw_fd()) }.unwrap();
/// }
/// ```
// TODO: add an example using request_code_*!()
#[macro_export(local_inner_macros)]
macro_rules! ioctl_none_bad {
($(#[$attr:meta])* $name:ident, $nr:expr) => (
$(#[$attr])*
pub unsafe fn $name(fd: $crate::libc::c_int)
-> $crate::Result<$crate::libc::c_int> {
convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type))
}
)
}
/// Generates a wrapper function for an ioctl that reads data from the kernel.
///
/// The arguments to this macro are:
///
/// * The function name
/// * The ioctl identifier
/// * The ioctl sequence number
/// * The data type passed by this ioctl
///
/// The generated function has the following signature:
///
/// ```rust,ignore
/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int>
/// ```
///
/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html).
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate nix;
/// const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h
/// const SPI_IOC_TYPE_MODE: u8 = 1;
/// ioctl_read!(spi_read_mode, SPI_IOC_MAGIC, SPI_IOC_TYPE_MODE, u8);
/// # fn main() {}
/// ```
#[macro_export(local_inner_macros)]
macro_rules! ioctl_read {
($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => (
$(#[$attr])*
pub unsafe fn $name(fd: $crate::libc::c_int,
data: *mut $ty)
-> $crate::Result<$crate::libc::c_int> {
convert_ioctl_res!($crate::libc::ioctl(fd, request_code_read!($ioty, $nr, ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data))
}
)
}
/// Generates a wrapper function for a "bad" ioctl that reads data from the kernel.
///
/// The arguments to this macro are:
///
/// * The function name
/// * The ioctl request code
/// * The data type passed by this ioctl
///
/// The generated function has the following signature:
///
/// ```rust,ignore
/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int>
/// ```
///
/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html).
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate nix;
/// # #[cfg(any(target_os = "android", target_os = "linux"))]
/// ioctl_read_bad!(tcgets, libc::TCGETS, libc::termios);
/// # fn main() {}
/// ```
#[macro_export(local_inner_macros)]
macro_rules! ioctl_read_bad {
($(#[$attr:meta])* $name:ident, $nr:expr, $ty:ty) => (
$(#[$attr])*
pub unsafe fn $name(fd: $crate::libc::c_int,
data: *mut $ty)
-> $crate::Result<$crate::libc::c_int> {
convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data))
}
)
}
/// Generates a wrapper function for an ioctl that writes data through a pointer to the kernel.
///
/// The arguments to this macro are:
///
/// * The function name
/// * The ioctl identifier
/// * The ioctl sequence number
/// * The data type passed by this ioctl
///
/// The generated function has the following signature:
///
/// ```rust,ignore
/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *const DATA_TYPE) -> Result<libc::c_int>
/// ```
///
/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html).
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate nix;
/// # pub struct v4l2_audio {}
/// ioctl_write_ptr!(s_audio, b'V', 34, v4l2_audio);
/// # fn main() {}
/// ```
#[macro_export(local_inner_macros)]
macro_rules! ioctl_write_ptr {
($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => (
$(#[$attr])*
pub unsafe fn $name(fd: $crate::libc::c_int,
data: *const $ty)
-> $crate::Result<$crate::libc::c_int> {
convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write!($ioty, $nr, ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data))
}
)
}
/// Generates a wrapper function for a "bad" ioctl that writes data through a pointer to the kernel.
///
/// The arguments to this macro are:
///
/// * The function name
/// * The ioctl request code
/// * The data type passed by this ioctl
///
/// The generated function has the following signature:
///
/// ```rust,ignore
/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *const DATA_TYPE) -> Result<libc::c_int>
/// ```
///
/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html).
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate nix;
/// # #[cfg(any(target_os = "android", target_os = "linux"))]
/// ioctl_write_ptr_bad!(tcsets, libc::TCSETS, libc::termios);
/// # fn main() {}
/// ```
#[macro_export(local_inner_macros)]
macro_rules! ioctl_write_ptr_bad {
($(#[$attr:meta])* $name:ident, $nr:expr, $ty:ty) => (
$(#[$attr])*
pub unsafe fn $name(fd: $crate::libc::c_int,
data: *const $ty)
-> $crate::Result<$crate::libc::c_int> {
convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data))
}
)
}
cfg_if!{
if #[cfg(any(target_os = "dragonfly", target_os = "freebsd"))] {
/// Generates a wrapper function for a ioctl that writes an integer to the kernel.
///
/// The arguments to this macro are:
///
/// * The function name
/// * The ioctl identifier
/// * The ioctl sequence number
///
/// The generated function has the following signature:
///
/// ```rust,ignore
/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: nix::sys::ioctl::ioctl_param_type) -> Result<libc::c_int>
/// ```
///
/// `nix::sys::ioctl::ioctl_param_type` depends on the OS:
/// * BSD - `libc::c_int`
/// * Linux - `libc::c_ulong`
///
/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html).
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate nix;
/// ioctl_write_int!(vt_activate, b'v', 4);
/// # fn main() {}
/// ```
#[macro_export(local_inner_macros)]
macro_rules! ioctl_write_int {
($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr) => (
$(#[$attr])*
pub unsafe fn $name(fd: $crate::libc::c_int,
data: $crate::sys::ioctl::ioctl_param_type)
-> $crate::Result<$crate::libc::c_int> {
convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write_int!($ioty, $nr) as $crate::sys::ioctl::ioctl_num_type, data))
}
)
}
} else {
/// Generates a wrapper function for a ioctl that writes an integer to the kernel.
///
/// The arguments to this macro are:
///
/// * The function name
/// * The ioctl identifier
/// * The ioctl sequence number
///
/// The generated function has the following signature:
///
/// ```rust,ignore
/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: nix::sys::ioctl::ioctl_param_type) -> Result<libc::c_int>
/// ```
///
/// `nix::sys::ioctl::ioctl_param_type` depends on the OS:
/// * BSD - `libc::c_int`
/// * Linux - `libc::c_ulong`
///
/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html).
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate nix;
/// const HCI_IOC_MAGIC: u8 = b'k';
/// const HCI_IOC_HCIDEVUP: u8 = 1;
/// ioctl_write_int!(hci_dev_up, HCI_IOC_MAGIC, HCI_IOC_HCIDEVUP);
/// # fn main() {}
/// ```
#[macro_export(local_inner_macros)]
macro_rules! ioctl_write_int {
($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr) => (
$(#[$attr])*
pub unsafe fn $name(fd: $crate::libc::c_int,
data: $crate::sys::ioctl::ioctl_param_type)
-> $crate::Result<$crate::libc::c_int> {
convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write!($ioty, $nr, ::std::mem::size_of::<$crate::libc::c_int>()) as $crate::sys::ioctl::ioctl_num_type, data))
}
)
}
}
}
/// Generates a wrapper function for a "bad" ioctl that writes an integer to the kernel.
///
/// The arguments to this macro are:
///
/// * The function name
/// * The ioctl request code
///
/// The generated function has the following signature:
///
/// ```rust,ignore
/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: libc::c_int) -> Result<libc::c_int>
/// ```
///
/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html).
///
/// # Examples
///
/// ```
/// # #[macro_use] extern crate nix;
/// # #[cfg(any(target_os = "android", target_os = "linux"))]
/// ioctl_write_int_bad!(tcsbrk, libc::TCSBRK);
/// # fn main() {}
/// ```
///
/// ```rust
/// # #[macro_use] extern crate nix;
/// const KVMIO: u8 = 0xAE;
/// ioctl_write_int_bad!(kvm_create_vm, request_code_none!(KVMIO, 0x03));
/// # fn main() {}
/// ```
#[macro_export(local_inner_macros)]
macro_rules! ioctl_write_int_bad {
($(#[$attr:meta])* $name:ident, $nr:expr) => (
$(#[$attr])*
pub unsafe fn $name(fd: $crate::libc::c_int,
data: $crate::libc::c_int)
-> $crate::Result<$crate::libc::c_int> {
convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data))
}
)
}
/// Generates a wrapper function for an ioctl that reads and writes data to the kernel.
///
/// The arguments to this macro are:
///
/// * The function name
/// * The ioctl identifier
/// * The ioctl sequence number
/// * The data type passed by this ioctl
///
/// The generated function has the following signature:
///
/// ```rust,ignore
/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int>
/// ```
///
/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html).
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate nix;
/// # pub struct v4l2_audio {}
/// ioctl_readwrite!(enum_audio, b'V', 65, v4l2_audio);
/// # fn main() {}
/// ```
#[macro_export(local_inner_macros)]
macro_rules! ioctl_readwrite {
($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => (
$(#[$attr])*
pub unsafe fn $name(fd: $crate::libc::c_int,
data: *mut $ty)
-> $crate::Result<$crate::libc::c_int> {
convert_ioctl_res!($crate::libc::ioctl(fd, request_code_readwrite!($ioty, $nr, ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data))
}
)
}
/// Generates a wrapper function for a "bad" ioctl that reads and writes data to the kernel.
///
/// The arguments to this macro are:
///
/// * The function name
/// * The ioctl request code
/// * The data type passed by this ioctl
///
/// The generated function has the following signature:
///
/// ```rust,ignore
/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: *mut DATA_TYPE) -> Result<libc::c_int>
/// ```
///
/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html).
// TODO: Find an example for ioctl_readwrite_bad
#[macro_export(local_inner_macros)]
macro_rules! ioctl_readwrite_bad {
($(#[$attr:meta])* $name:ident, $nr:expr, $ty:ty) => (
$(#[$attr])*
pub unsafe fn $name(fd: $crate::libc::c_int,
data: *mut $ty)
-> $crate::Result<$crate::libc::c_int> {
convert_ioctl_res!($crate::libc::ioctl(fd, $nr as $crate::sys::ioctl::ioctl_num_type, data))
}
)
}
/// Generates a wrapper function for an ioctl that reads an array of elements from the kernel.
///
/// The arguments to this macro are:
///
/// * The function name
/// * The ioctl identifier
/// * The ioctl sequence number
/// * The data type passed by this ioctl
///
/// The generated function has the following signature:
///
/// ```rust,ignore
/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: &mut [DATA_TYPE]) -> Result<libc::c_int>
/// ```
///
/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html).
// TODO: Find an example for ioctl_read_buf
#[macro_export(local_inner_macros)]
macro_rules! ioctl_read_buf {
($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => (
$(#[$attr])*
pub unsafe fn $name(fd: $crate::libc::c_int,
data: &mut [$ty])
-> $crate::Result<$crate::libc::c_int> {
convert_ioctl_res!($crate::libc::ioctl(fd, request_code_read!($ioty, $nr, data.len() * ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data))
}
)
}
/// Generates a wrapper function for an ioctl that writes an array of elements to the kernel.
///
/// The arguments to this macro are:
///
/// * The function name
/// * The ioctl identifier
/// * The ioctl sequence number
/// * The data type passed by this ioctl
///
/// The generated function has the following signature:
///
/// ```rust,ignore
/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: &[DATA_TYPE]) -> Result<libc::c_int>
/// ```
///
/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html).
///
/// # Examples
///
/// ```
/// # #[macro_use] extern crate nix;
/// const SPI_IOC_MAGIC: u8 = b'k'; // Defined in linux/spi/spidev.h
/// const SPI_IOC_TYPE_MESSAGE: u8 = 0;
/// # pub struct spi_ioc_transfer(u64);
/// ioctl_write_buf!(spi_transfer, SPI_IOC_MAGIC, SPI_IOC_TYPE_MESSAGE, spi_ioc_transfer);
/// # fn main() {}
/// ```
#[macro_export(local_inner_macros)]
macro_rules! ioctl_write_buf {
($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => (
$(#[$attr])*
pub unsafe fn $name(fd: $crate::libc::c_int,
data: &[$ty])
-> $crate::Result<$crate::libc::c_int> {
convert_ioctl_res!($crate::libc::ioctl(fd, request_code_write!($ioty, $nr, data.len() * ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data))
}
)
}
/// Generates a wrapper function for an ioctl that reads and writes an array of elements to the kernel.
///
/// The arguments to this macro are:
///
/// * The function name
/// * The ioctl identifier
/// * The ioctl sequence number
/// * The data type passed by this ioctl
///
/// The generated function has the following signature:
///
/// ```rust,ignore
/// pub unsafe fn FUNCTION_NAME(fd: libc::c_int, data: &mut [DATA_TYPE]) -> Result<libc::c_int>
/// ```
///
/// For a more in-depth explanation of ioctls, see [`::sys::ioctl`](sys/ioctl/index.html).
// TODO: Find an example for readwrite_buf
#[macro_export(local_inner_macros)]
macro_rules! ioctl_readwrite_buf {
($(#[$attr:meta])* $name:ident, $ioty:expr, $nr:expr, $ty:ty) => (
$(#[$attr])*
pub unsafe fn $name(fd: $crate::libc::c_int,
data: &mut [$ty])
-> $crate::Result<$crate::libc::c_int> {
convert_ioctl_res!($crate::libc::ioctl(fd, request_code_readwrite!($ioty, $nr, data.len() * ::std::mem::size_of::<$ty>()) as $crate::sys::ioctl::ioctl_num_type, data))
}
)
}