1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
//! A lock-free concurrent slab.
//!
//! Slabs provide pre-allocated storage for many instances of a single data
//! type. When a large number of values of a single type are required,
//! this can be more efficient than allocating each item individually. Since the
//! allocated items are the same size, memory fragmentation is reduced, and
//! creating and removing new items can be very cheap.
//!
//! This crate implements a lock-free concurrent slab, indexed by `usize`s.
//!
//! ## Usage
//!
//! First, add this to your `Cargo.toml`:
//!
//! ```toml
//! sharded-slab = "0.1.1"
//! ```
//!
//! This crate provides two  types, [`Slab`] and [`Pool`], which provide
//! slightly different APIs for using a sharded slab.
//!
//! [`Slab`] implements a slab for _storing_ small types, sharing them between
//! threads, and accessing them by index. New entries are allocated by
//! [inserting] data, moving it in by value. Similarly, entries may be
//! deallocated by [taking] from the slab, moving the value out. This API is
//! similar to a `Vec<Option<T>>`, but allowing lock-free concurrent insertion
//! and removal.
//!
//! In contrast, the [`Pool`] type provides an [object pool] style API for
//! _reusing storage_. Rather than constructing values and moving them into the
//! pool, as with [`Slab`], [allocating an entry][create] from the pool takes a
//! closure that's provided with a mutable reference to initialize the entry in
//! place. When entries are deallocated, they are [cleared] in place. Types
//! which own a heap allocation can be cleared by dropping any _data_ they
//! store, but retaining any previously-allocated capacity. This means that a
//! [`Pool`] may be used to reuse a set of existing heap allocations, reducing
//! allocator load.
//!
//! [`Slab`]: struct.Slab.html
//! [inserting]: struct.Slab.html#method.insert
//! [taking]: struct.Slab.html#method.take
//! [`Pool`]: struct.Pool.html
//! [create]: struct.Pool.html#method.create
//! [cleared]: trait.Clear.html
//! [object pool]: https://en.wikipedia.org/wiki/Object_pool_pattern
//!
//! # Examples
//!
//! Inserting an item into the slab, returning an index:
//! ```rust
//! # use sharded_slab::Slab;
//! let slab = Slab::new();
//!
//! let key = slab.insert("hello world").unwrap();
//! assert_eq!(slab.get(key).unwrap(), "hello world");
//! ```
//!
//! To share a slab across threads, it may be wrapped in an `Arc`:
//! ```rust
//! # use sharded_slab::Slab;
//! use std::sync::Arc;
//! let slab = Arc::new(Slab::new());
//!
//! let slab2 = slab.clone();
//! let thread2 = std::thread::spawn(move || {
//!     let key = slab2.insert("hello from thread two").unwrap();
//!     assert_eq!(slab2.get(key).unwrap(), "hello from thread two");
//!     key
//! });
//!
//! let key1 = slab.insert("hello from thread one").unwrap();
//! assert_eq!(slab.get(key1).unwrap(), "hello from thread one");
//!
//! // Wait for thread 2 to complete.
//! let key2 = thread2.join().unwrap();
//!
//! // The item inserted by thread 2 remains in the slab.
//! assert_eq!(slab.get(key2).unwrap(), "hello from thread two");
//!```
//!
//! If items in the slab must be mutated, a `Mutex` or `RwLock` may be used for
//! each item, providing granular locking of items rather than of the slab:
//!
//! ```rust
//! # use sharded_slab::Slab;
//! use std::sync::{Arc, Mutex};
//! let slab = Arc::new(Slab::new());
//!
//! let key = slab.insert(Mutex::new(String::from("hello world"))).unwrap();
//!
//! let slab2 = slab.clone();
//! let thread2 = std::thread::spawn(move || {
//!     let hello = slab2.get(key).expect("item missing");
//!     let mut hello = hello.lock().expect("mutex poisoned");
//!     *hello = String::from("hello everyone!");
//! });
//!
//! thread2.join().unwrap();
//!
//! let hello = slab.get(key).expect("item missing");
//! let mut hello = hello.lock().expect("mutex poisoned");
//! assert_eq!(hello.as_str(), "hello everyone!");
//! ```
//!
//! # Configuration
//!
//! For performance reasons, several values used by the slab are calculated as
//! constants. In order to allow users to tune the slab's parameters, we provide
//! a [`Config`] trait which defines these parameters as associated `consts`.
//! The `Slab` type is generic over a `C: Config` parameter.
//!
//! [`Config`]: trait.Config.html
//!
//! # Comparison with Similar Crates
//!
//! - [`slab`]: Carl Lerche's `slab` crate provides a slab implementation with a
//!   similar API, implemented by storing all data in a single vector.
//!
//!   Unlike `sharded_slab`, inserting and removing elements from the slab
//!   requires  mutable access. This means that if the slab is accessed
//!   concurrently by multiple threads, it is necessary for it to be protected
//!   by a `Mutex` or `RwLock`. Items may not be inserted or removed (or
//!   accessed, if a `Mutex` is used) concurrently, even when they are
//!   unrelated. In many cases, the lock can become a significant bottleneck. On
//!   the other hand, this crate allows separate indices in the slab to be
//!   accessed, inserted, and removed concurrently without requiring a global
//!   lock. Therefore, when the slab is shared across multiple threads, this
//!   crate offers significantly better performance than `slab`.
//!
//!   However, the lock free slab introduces some additional constant-factor
//!   overhead. This means that in use-cases where a slab is _not_ shared by
//!   multiple threads and locking is not required, this crate will likely offer
//!   slightly worse performance.
//!
//!   In summary: `sharded-slab` offers significantly improved performance in
//!   concurrent use-cases, while `slab` should be preferred in single-threaded
//!   use-cases.
//!
//! [`slab`]: https://crates.io/crates/loom
//!
//! # Safety and Correctness
//!
//! Most implementations of lock-free data structures in Rust require some
//! amount of unsafe code, and this crate is not an exception. In order to catch
//! potential bugs in this unsafe code, we make use of [`loom`], a
//! permutation-testing tool for concurrent Rust programs. All `unsafe` blocks
//! this crate occur in accesses to `loom` `UnsafeCell`s. This means that when
//! those accesses occur in this crate's tests, `loom` will assert that they are
//! valid under the C11 memory model across multiple permutations of concurrent
//! executions of those tests.
//!
//! In order to guard against the [ABA problem][aba], this crate makes use of
//! _generational indices_. Each slot in the slab tracks a generation counter
//! which is incremented every time a value is inserted into that slot, and the
//! indices returned by [`Slab::insert`] include the generation of the slot when
//! the value was inserted, packed into the high-order bits of the index. This
//! ensures that if a value is inserted, removed,  and a new value is inserted
//! into the same slot in the slab, the key returned by the first call to
//! `insert` will not map to the new value.
//!
//! Since a fixed number of bits are set aside to use for storing the generation
//! counter, the counter will wrap  around after being incremented a number of
//! times. To avoid situations where a returned index lives long enough to see the
//! generation counter wrap around to the same value, it is good to be fairly
//! generous when configuring the allocation of index bits.
//!
//! [`loom`]: https://crates.io/crates/loom
//! [aba]: https://en.wikipedia.org/wiki/ABA_problem
//! [`Slab::insert`]: struct.Slab.html#method.insert
//!
//! # Performance
//!
//! These graphs were produced by [benchmarks] of the sharded slab implementation,
//! using the [`criterion`] crate.
//!
//! The first shows the results of a benchmark where an increasing number of
//! items are inserted and then removed into a slab concurrently by five
//! threads. It compares the performance of the sharded slab implementation
//! with a `RwLock<slab::Slab>`:
//!
//! <img width="1124" alt="Screen Shot 2019-10-01 at 5 09 49 PM" src="https://user-images.githubusercontent.com/2796466/66078398-cd6c9f80-e516-11e9-9923-0ed6292e8498.png">
//!
//! The second graph shows the results of a benchmark where an increasing
//! number of items are inserted and then removed by a _single_ thread. It
//! compares the performance of the sharded slab implementation with an
//! `RwLock<slab::Slab>` and a `mut slab::Slab`.
//!
//! <img width="925" alt="Screen Shot 2019-10-01 at 5 13 45 PM" src="https://user-images.githubusercontent.com/2796466/66078469-f0974f00-e516-11e9-95b5-f65f0aa7e494.png">
//!
//! These benchmarks demonstrate that, while the sharded approach introduces
//! a small constant-factor overhead, it offers significantly better
//! performance across concurrent accesses.
//!
//! [benchmarks]: https://github.com/hawkw/sharded-slab/blob/master/benches/bench.rs
//! [`criterion`]: https://crates.io/crates/criterion
//!
//! # Implementation Notes
//!
//! See [this page](implementation/index.html) for details on this crate's design
//! and implementation.
//!
#![doc(html_root_url = "https://docs.rs/sharded-slab/0.1.1")]
#![warn(missing_debug_implementations, missing_docs, missing_doc_code_examples)]

macro_rules! test_println {
    ($($arg:tt)*) => {
        if cfg!(test) && cfg!(slab_print) {
            if std::thread::panicking() {
                // getting the thread ID while panicking doesn't seem to play super nicely with loom's
                // mock lazy_static...
                println!("[PANIC {:>17}:{:<3}] {}", file!(), line!(), format_args!($($arg)*))
            } else {
                println!("[{:?} {:>17}:{:<3}] {}", crate::Tid::<crate::DefaultConfig>::current(), file!(), line!(), format_args!($($arg)*))
            }
        }
    }
}

#[cfg(all(test, loom))]
macro_rules! test_dbg {
    ($e:expr) => {
        match $e {
            e => {
                test_println!("{} = {:?}", stringify!($e), &e);
                e
            }
        }
    };
}

mod clear;
pub mod implementation;
mod page;
pub mod pool;
pub(crate) mod sync;
mod tid;
pub(crate) use tid::Tid;
pub(crate) mod cfg;
mod iter;
mod shard;
use cfg::CfgPrivate;
pub use cfg::{Config, DefaultConfig};
pub use clear::Clear;
#[doc(inline)]
pub use pool::Pool;
use shard::Shard;
use std::ptr;
use std::{fmt, marker::PhantomData, sync::Arc};

/// A sharded slab.
///
/// See the [crate-level documentation](index.html) for details on using this type.
pub struct Slab<T, C: cfg::Config = DefaultConfig> {
    shards: shard::Array<Option<T>, C>,
    _cfg: PhantomData<C>,
}

/// A handle that allows access to an object in a slab.
///
/// While the guard exists, it indicates to the slab that the item the guard
/// references is currently being accessed. If the item is removed from the slab
/// while a guard exists, the removal will be deferred until all guards are dropped.
pub struct Entry<'a, T, C: cfg::Config = DefaultConfig> {
    inner: page::slot::Guard<Option<T>, C>,
    value: ptr::NonNull<T>,
    shard: &'a Shard<Option<T>, C>,
    key: usize,
}

/// A handle to a vacant entry in a `Slab`.
///
/// `VacantEntry` allows constructing values with the key that they will be
/// assigned to.
///
/// # Examples
///
/// ```
/// # use sharded_slab::Slab;
/// let mut slab = Slab::new();
///
/// let hello = {
///     let entry = slab.vacant_entry().unwrap();
///     let key = entry.key();
///
///     entry.insert((key, "hello"));
///     key
/// };
///
/// assert_eq!(hello, slab.get(hello).unwrap().0);
/// assert_eq!("hello", slab.get(hello).unwrap().1);
/// ```
#[derive(Debug)]
pub struct VacantEntry<'a, T, C: cfg::Config = DefaultConfig> {
    inner: page::slot::InitGuard<Option<T>, C>,
    key: usize,
    _lt: PhantomData<&'a ()>,
}

/// An owned guard that allows access to an object in a `S.ab`.
///
/// While the guard exists, it indicates to the slab that the item the guard references is
/// currently being accessed. If the item is removed from the slab while the guard exists, the
/// removal will be deferred until all guards are dropped.
///
/// Unlike [`Entry`], which borrows the slab, an `OwnedEntry` clones the `Arc`
/// around the slab. Therefore, it keeps the slab from being dropped until all
/// such guards have been dropped. This means that an `OwnedEntry` may be held for
/// an arbitrary lifetime.
///
/// # Examples
///
/// ```
/// # use sharded_slab::Slab;
/// use std::sync::Arc;
///
/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
/// let key = slab.insert("hello world").unwrap();
///
/// // Look up the created key, returning an `OwnedEntry`.
/// let value = slab.clone().get_owned(key).unwrap();
///
/// // Now, the original `Arc` clone of the slab may be dropped, but the
/// // returned `OwnedEntry` can still access the value.
/// assert_eq!(value, "hello world");
/// ```
///
/// Unlike [`Entry`], an `OwnedEntry` may be stored in a struct which must live
/// for the `'static` lifetime:
///
/// ```
/// # use sharded_slab::Slab;
/// use sharded_slab::OwnedEntry;
/// use std::sync::Arc;
///
/// pub struct MyStruct {
///     entry: OwnedEntry<&'static str>,
///     // ... other fields ...
/// }
///
/// // Suppose this is some arbitrary function which requires a value that
/// // lives for the 'static lifetime...
/// fn function_requiring_static<T: 'static>(t: &T) {
///     // ... do something extremely important and interesting ...
/// }
///
/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
/// let key = slab.insert("hello world").unwrap();
///
/// // Look up the created key, returning an `OwnedEntry`.
/// let entry = slab.clone().get_owned(key).unwrap();
/// let my_struct = MyStruct {
///     entry,
///     // ...
/// };
///
/// // We can use `my_struct` anywhere where it is required to have the
/// // `'static` lifetime:
/// function_requiring_static(&my_struct);
/// ```
///
/// `OwnedEntry`s may be sent between threads:
///
/// ```
/// # use sharded_slab::Slab;
/// use std::{thread, sync::Arc};
///
/// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
/// let key = slab.insert("hello world").unwrap();
///
/// // Look up the created key, returning an `OwnedEntry`.
/// let value = slab.clone().get_owned(key).unwrap();
///
/// thread::spawn(move || {
///     assert_eq!(value, "hello world");
///     // ...
/// }).join().unwrap();
/// ```
///
/// [`get`]: Slab::get
/// [`OwnedEntry`]: crate::OwnedEntry
/// [`Entry`]: crate::Entry
///
/// [`Entry`]: crate::Entry
pub struct OwnedEntry<T, C = DefaultConfig>
where
    C: cfg::Config,
{
    inner: page::slot::Guard<Option<T>, C>,
    value: ptr::NonNull<T>,
    slab: Arc<Slab<T, C>>,
    key: usize,
}

impl<T> Slab<T> {
    /// Returns a new slab with the default configuration parameters.
    pub fn new() -> Self {
        Self::new_with_config()
    }

    /// Returns a new slab with the provided configuration parameters.
    pub fn new_with_config<C: cfg::Config>() -> Slab<T, C> {
        C::validate();
        Slab {
            shards: shard::Array::new(),
            _cfg: PhantomData,
        }
    }
}

impl<T, C: cfg::Config> Slab<T, C> {
    /// The number of bits in each index which are used by the slab.
    ///
    /// If other data is packed into the `usize` indices returned by
    /// [`Slab::insert`], user code is free to use any bits higher than the
    /// `USED_BITS`-th bit freely.
    ///
    /// This is determined by the [`Config`] type that configures the slab's
    /// parameters. By default, all bits are used; this can be changed by
    /// overriding the [`Config::RESERVED_BITS`][res] constant.
    ///
    /// [`Config`]: trait.Config.html
    /// [res]: trait.Config.html#associatedconstant.RESERVED_BITS
    /// [`Slab::insert`]: struct.Slab.html#method.insert
    pub const USED_BITS: usize = C::USED_BITS;

    /// Inserts a value into the slab, returning a key that can be used to
    /// access it.
    ///
    /// If this function returns `None`, then the shard for the current thread
    /// is full and no items can be added until some are removed, or the maximum
    /// number of shards has been reached.
    ///
    /// # Examples
    /// ```rust
    /// # use sharded_slab::Slab;
    /// let slab = Slab::new();
    ///
    /// let key = slab.insert("hello world").unwrap();
    /// assert_eq!(slab.get(key).unwrap(), "hello world");
    /// ```
    pub fn insert(&self, value: T) -> Option<usize> {
        let (tid, shard) = self.shards.current();
        test_println!("insert {:?}", tid);
        let mut value = Some(value);
        shard
            .init_with(|idx, slot| {
                let gen = slot.insert(&mut value)?;
                Some(gen.pack(idx))
            })
            .map(|idx| tid.pack(idx))
    }

    /// Return a handle to a vacant entry allowing for further manipulation.
    ///
    /// This function is useful when creating values that must contain their
    /// slab key. The returned `VacantEntry` reserves a slot in the slab and is
    /// able to query the associated key.
    ///
    /// # Examples
    ///
    /// ```
    /// # use sharded_slab::Slab;
    /// let mut slab = Slab::new();
    ///
    /// let hello = {
    ///     let entry = slab.vacant_entry().unwrap();
    ///     let key = entry.key();
    ///
    ///     entry.insert((key, "hello"));
    ///     key
    /// };
    ///
    /// assert_eq!(hello, slab.get(hello).unwrap().0);
    /// assert_eq!("hello", slab.get(hello).unwrap().1);
    /// ```
    pub fn vacant_entry(&self) -> Option<VacantEntry<'_, T, C>> {
        let (tid, shard) = self.shards.current();
        test_println!("vacant_entry {:?}", tid);
        shard.init_with(|idx, slot| {
            let inner = slot.init()?;
            let key = inner.generation().pack(tid.pack(idx));
            Some(VacantEntry {
                inner,
                key,
                _lt: PhantomData,
            })
        })
    }

    /// Remove the value associated with the given key from the slab, returning
    /// `true` if a value was removed.
    ///
    /// Unlike [`take`], this method does _not_ block the current thread until
    /// the value can be removed. Instead, if another thread is currently
    /// accessing that value, this marks it to be removed by that thread when it
    /// finishes accessing the value.
    ///
    /// # Examples
    ///
    /// ```rust
    /// let slab = sharded_slab::Slab::new();
    /// let key = slab.insert("hello world").unwrap();
    ///
    /// // Remove the item from the slab.
    /// assert!(slab.remove(key));
    ///
    /// // Now, the slot is empty.
    /// assert!(!slab.contains(key));
    /// ```
    ///
    /// ```rust
    /// use std::sync::Arc;
    ///
    /// let slab = Arc::new(sharded_slab::Slab::new());
    /// let key = slab.insert("hello world").unwrap();
    ///
    /// let slab2 = slab.clone();
    /// let thread2 = std::thread::spawn(move || {
    ///     // Depending on when this thread begins executing, the item may
    ///     // or may not have already been removed...
    ///     if let Some(item) = slab2.get(key) {
    ///         assert_eq!(item, "hello world");
    ///     }
    /// });
    ///
    /// // The item will be removed by thread2 when it finishes accessing it.
    /// assert!(slab.remove(key));
    ///
    /// thread2.join().unwrap();
    /// assert!(!slab.contains(key));
    /// ```
    /// [`take`]: #method.take
    pub fn remove(&self, idx: usize) -> bool {
        // The `Drop` impl for `Entry` calls `remove_local` or `remove_remote` based
        // on where the guard was dropped from. If the dropped guard was the last one, this will
        // call `Slot::remove_value` which actually clears storage.
        let tid = C::unpack_tid(idx);

        test_println!("rm_deferred {:?}", tid);
        let shard = self.shards.get(tid.as_usize());
        if tid.is_current() {
            shard.map(|shard| shard.remove_local(idx)).unwrap_or(false)
        } else {
            shard.map(|shard| shard.remove_remote(idx)).unwrap_or(false)
        }
    }

    /// Removes the value associated with the given key from the slab, returning
    /// it.
    ///
    /// If the slab does not contain a value for that key, `None` is returned
    /// instead.
    ///
    /// If the value associated with the given key is currently being
    /// accessed by another thread, this method will block the current thread
    /// until the item is no longer accessed. If this is not desired, use
    /// [`remove`] instead.
    ///
    /// **Note**: This method blocks the calling thread by spinning until the
    /// currently outstanding references are released. Spinning for long periods
    /// of time can result in high CPU time and power consumption. Therefore,
    /// `take` should only be called when other references to the slot are
    /// expected to be dropped soon (e.g., when all accesses are relatively
    /// short).
    ///
    /// # Examples
    ///
    /// ```rust
    /// let slab = sharded_slab::Slab::new();
    /// let key = slab.insert("hello world").unwrap();
    ///
    /// // Remove the item from the slab, returning it.
    /// assert_eq!(slab.take(key), Some("hello world"));
    ///
    /// // Now, the slot is empty.
    /// assert!(!slab.contains(key));
    /// ```
    ///
    /// ```rust
    /// use std::sync::Arc;
    ///
    /// let slab = Arc::new(sharded_slab::Slab::new());
    /// let key = slab.insert("hello world").unwrap();
    ///
    /// let slab2 = slab.clone();
    /// let thread2 = std::thread::spawn(move || {
    ///     // Depending on when this thread begins executing, the item may
    ///     // or may not have already been removed...
    ///     if let Some(item) = slab2.get(key) {
    ///         assert_eq!(item, "hello world");
    ///     }
    /// });
    ///
    /// // The item will only be removed when the other thread finishes
    /// // accessing it.
    /// assert_eq!(slab.take(key), Some("hello world"));
    ///
    /// thread2.join().unwrap();
    /// assert!(!slab.contains(key));
    /// ```
    /// [`remove`]: #method.remove
    pub fn take(&self, idx: usize) -> Option<T> {
        let tid = C::unpack_tid(idx);

        test_println!("rm {:?}", tid);
        let shard = self.shards.get(tid.as_usize())?;
        if tid.is_current() {
            shard.take_local(idx)
        } else {
            shard.take_remote(idx)
        }
    }

    /// Return a reference to the value associated with the given key.
    ///
    /// If the slab does not contain a value for the given key, or if the
    /// maximum number of concurrent references to the slot has been reached,
    /// `None` is returned instead.
    ///
    /// # Examples
    ///
    /// ```rust
    /// let slab = sharded_slab::Slab::new();
    /// let key = slab.insert("hello world").unwrap();
    ///
    /// assert_eq!(slab.get(key).unwrap(), "hello world");
    /// assert!(slab.get(12345).is_none());
    /// ```
    pub fn get(&self, key: usize) -> Option<Entry<'_, T, C>> {
        let tid = C::unpack_tid(key);

        test_println!("get {:?}; current={:?}", tid, Tid::<C>::current());
        let shard = self.shards.get(tid.as_usize())?;
        shard.with_slot(key, |slot| {
            let inner = slot.get(C::unpack_gen(key))?;
            let value = ptr::NonNull::from(slot.value().as_ref().unwrap());
            Some(Entry {
                inner,
                value,
                shard,
                key,
            })
        })
    }

    /// Return an owned reference to the value associated with the given key.
    ///
    /// If the slab does not contain a value for the given key, `None` is
    /// returned instead.
    ///
    /// Unlike [`get`], which borrows the slab, this method _clones_ the `Arc`
    /// around the slab. This means that the returned [`OwnedEntry`] can be held
    /// for an arbitrary lifetime. However,  this method requires that the slab
    /// itself be wrapped in an `Arc`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use sharded_slab::Slab;
    /// use std::sync::Arc;
    ///
    /// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
    /// let key = slab.insert("hello world").unwrap();
    ///
    /// // Look up the created key, returning an `OwnedEntry`.
    /// let value = slab.clone().get_owned(key).unwrap();
    ///
    /// // Now, the original `Arc` clone of the slab may be dropped, but the
    /// // returned `OwnedEntry` can still access the value.
    /// assert_eq!(value, "hello world");
    /// ```
    ///
    /// Unlike [`Entry`], an `OwnedEntry` may be stored in a struct which must live
    /// for the `'static` lifetime:
    ///
    /// ```
    /// # use sharded_slab::Slab;
    /// use sharded_slab::OwnedEntry;
    /// use std::sync::Arc;
    ///
    /// pub struct MyStruct {
    ///     entry: OwnedEntry<&'static str>,
    ///     // ... other fields ...
    /// }
    ///
    /// // Suppose this is some arbitrary function which requires a value that
    /// // lives for the 'static lifetime...
    /// fn function_requiring_static<T: 'static>(t: &T) {
    ///     // ... do something extremely important and interesting ...
    /// }
    ///
    /// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
    /// let key = slab.insert("hello world").unwrap();
    ///
    /// // Look up the created key, returning an `OwnedEntry`.
    /// let entry = slab.clone().get_owned(key).unwrap();
    /// let my_struct = MyStruct {
    ///     entry,
    ///     // ...
    /// };
    ///
    /// // We can use `my_struct` anywhere where it is required to have the
    /// // `'static` lifetime:
    /// function_requiring_static(&my_struct);
    /// ```
    ///
    /// `OwnedEntry`s may be sent between threads:
    ///
    /// ```
    /// # use sharded_slab::Slab;
    /// use std::{thread, sync::Arc};
    ///
    /// let slab: Arc<Slab<&'static str>> = Arc::new(Slab::new());
    /// let key = slab.insert("hello world").unwrap();
    ///
    /// // Look up the created key, returning an `OwnedEntry`.
    /// let value = slab.clone().get_owned(key).unwrap();
    ///
    /// thread::spawn(move || {
    ///     assert_eq!(value, "hello world");
    ///     // ...
    /// }).join().unwrap();
    /// ```
    ///
    /// [`get`]: Slab::get
    /// [`OwnedEntry`]: crate::OwnedEntry
    /// [`Entry`]: crate::Entry
    pub fn get_owned(self: Arc<Self>, key: usize) -> Option<OwnedEntry<T, C>> {
        let tid = C::unpack_tid(key);

        test_println!("get_owned {:?}; current={:?}", tid, Tid::<C>::current());
        let shard = self.shards.get(tid.as_usize())?;
        shard.with_slot(key, |slot| {
            let inner = slot.get(C::unpack_gen(key))?;
            let value = ptr::NonNull::from(slot.value().as_ref().unwrap());
            Some(OwnedEntry {
                inner,
                value,
                slab: self.clone(),
                key,
            })
        })
    }

    /// Returns `true` if the slab contains a value for the given key.
    ///
    /// # Examples
    ///
    /// ```
    /// let slab = sharded_slab::Slab::new();
    ///
    /// let key = slab.insert("hello world").unwrap();
    /// assert!(slab.contains(key));
    ///
    /// slab.take(key).unwrap();
    /// assert!(!slab.contains(key));
    /// ```
    pub fn contains(&self, key: usize) -> bool {
        self.get(key).is_some()
    }

    /// Returns an iterator over all the items in the slab.
    pub fn unique_iter(&mut self) -> iter::UniqueIter<'_, T, C> {
        let mut shards = self.shards.iter_mut();
        let shard = shards.next().expect("must be at least 1 shard");
        let mut pages = shard.iter();
        let slots = pages.next().and_then(page::Shared::iter);
        iter::UniqueIter {
            shards,
            slots,
            pages,
        }
    }
}

impl<T> Default for Slab<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: fmt::Debug, C: cfg::Config> fmt::Debug for Slab<T, C> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Slab")
            .field("shards", &self.shards)
            .field("config", &C::debug())
            .finish()
    }
}

unsafe impl<T: Send, C: cfg::Config> Send for Slab<T, C> {}
unsafe impl<T: Sync, C: cfg::Config> Sync for Slab<T, C> {}

// === impl Entry ===

impl<'a, T, C: cfg::Config> Entry<'a, T, C> {
    /// Returns the key used to access the guard.
    pub fn key(&self) -> usize {
        self.key
    }

    #[inline(always)]
    fn value(&self) -> &T {
        unsafe {
            // Safety: this is always going to be valid, as it's projected from
            // the safe reference to `self.value` --- this is just to avoid
            // having to `expect` an option in the hot path when dereferencing.
            self.value.as_ref()
        }
    }
}

impl<'a, T, C: cfg::Config> std::ops::Deref for Entry<'a, T, C> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        self.value()
    }
}

impl<'a, T, C: cfg::Config> Drop for Entry<'a, T, C> {
    fn drop(&mut self) {
        let should_remove = unsafe {
            // Safety: calling `slot::Guard::release` is unsafe, since the
            // `Guard` value contains a pointer to the slot that may outlive the
            // slab containing that slot. Here, the `Entry` guard owns a
            // borrowed reference to the shard containing that slot, which
            // ensures that the slot will not be dropped while this `Guard`
            // exists.
            self.inner.release()
        };
        if should_remove {
            self.shard.clear_after_release(self.key)
        }
    }
}

impl<'a, T, C> fmt::Debug for Entry<'a, T, C>
where
    T: fmt::Debug,
    C: cfg::Config,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(self.value(), f)
    }
}

impl<'a, T, C> PartialEq<T> for Entry<'a, T, C>
where
    T: PartialEq<T>,
    C: cfg::Config,
{
    fn eq(&self, other: &T) -> bool {
        self.value().eq(other)
    }
}

// === impl VacantEntry ===

impl<'a, T, C: cfg::Config> VacantEntry<'a, T, C> {
    /// Insert a value in the entry.
    ///
    /// To get the key associated with the value, use `key` prior to calling
    /// `insert`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use sharded_slab::Slab;
    /// let mut slab = Slab::new();
    ///
    /// let hello = {
    ///     let entry = slab.vacant_entry().unwrap();
    ///     let key = entry.key();
    ///
    ///     entry.insert((key, "hello"));
    ///     key
    /// };
    ///
    /// assert_eq!(hello, slab.get(hello).unwrap().0);
    /// assert_eq!("hello", slab.get(hello).unwrap().1);
    /// ```
    pub fn insert(mut self, val: T) {
        let value = unsafe {
            // Safety: this `VacantEntry` only lives as long as the `Slab` it was
            // borrowed from, so it cannot outlive the entry's slot.
            self.inner.value_mut()
        };
        debug_assert!(
            value.is_none(),
            "tried to insert to a slot that already had a value!"
        );
        *value = Some(val);
        let _released = unsafe {
            // Safety: again, this `VacantEntry` only lives as long as the
            // `Slab` it was borrowed from, so it cannot outlive the entry's
            // slot.
            self.inner.release()
        };
        debug_assert!(
            !_released,
            "removing a value before it was inserted should be a no-op"
        )
    }

    /// Return the key associated with this entry.
    ///
    /// A value stored in this entry will be associated with this key.
    ///
    /// # Examples
    ///
    /// ```
    /// # use sharded_slab::*;
    /// let mut slab = Slab::new();
    ///
    /// let hello = {
    ///     let entry = slab.vacant_entry().unwrap();
    ///     let key = entry.key();
    ///
    ///     entry.insert((key, "hello"));
    ///     key
    /// };
    ///
    /// assert_eq!(hello, slab.get(hello).unwrap().0);
    /// assert_eq!("hello", slab.get(hello).unwrap().1);
    /// ```
    pub fn key(&self) -> usize {
        self.key
    }
}
// === impl OwnedEntry ===

impl<T, C> OwnedEntry<T, C>
where
    C: cfg::Config,
{
    /// Returns the key used to access this guard
    pub fn key(&self) -> usize {
        self.key
    }

    #[inline(always)]
    fn value(&self) -> &T {
        unsafe {
            // Safety: this is always going to be valid, as it's projected from
            // the safe reference to `self.value` --- this is just to avoid
            // having to `expect` an option in the hot path when dereferencing.
            self.value.as_ref()
        }
    }
}

impl<T, C> std::ops::Deref for OwnedEntry<T, C>
where
    C: cfg::Config,
{
    type Target = T;

    fn deref(&self) -> &Self::Target {
        self.value()
    }
}

impl<T, C> Drop for OwnedEntry<T, C>
where
    C: cfg::Config,
{
    fn drop(&mut self) {
        test_println!("drop OwnedEntry: try clearing data");
        let should_clear = unsafe {
            // Safety: calling `slot::Guard::release` is unsafe, since the
            // `Guard` value contains a pointer to the slot that may outlive the
            // slab containing that slot. Here, the `OwnedEntry` owns an `Arc`
            // clone of the pool, which keeps it alive as long as the `OwnedEntry`
            // exists.
            self.inner.release()
        };
        if should_clear {
            let shard_idx = Tid::<C>::from_packed(self.key);
            test_println!("-> shard={:?}", shard_idx);
            if let Some(shard) = self.slab.shards.get(shard_idx.as_usize()) {
                shard.clear_after_release(self.key)
            } else {
                test_println!("-> shard={:?} does not exist! THIS IS A BUG", shard_idx);
                debug_assert!(std::thread::panicking(), "[internal error] tried to drop an `OwnedEntry` to a slot on a shard that never existed!");
            }
        }
    }
}

impl<T, C> fmt::Debug for OwnedEntry<T, C>
where
    T: fmt::Debug,
    C: cfg::Config,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(self.value(), f)
    }
}

impl<T, C> PartialEq<T> for OwnedEntry<T, C>
where
    T: PartialEq<T>,
    C: cfg::Config,
{
    fn eq(&self, other: &T) -> bool {
        *self.value() == *other
    }
}

unsafe impl<T, C> Sync for OwnedEntry<T, C>
where
    T: Sync,
    C: cfg::Config,
{
}

unsafe impl<T, C> Send for OwnedEntry<T, C>
where
    T: Sync,
    C: cfg::Config,
{
}

// === pack ===

pub(crate) trait Pack<C: cfg::Config>: Sized {
    // ====== provided by each implementation =================================

    /// The number of bits occupied by this type when packed into a usize.
    ///
    /// This must be provided to determine the number of bits into which to pack
    /// the type.
    const LEN: usize;
    /// The type packed on the less significant side of this type.
    ///
    /// If this type is packed into the least significant bit of a usize, this
    /// should be `()`, which occupies no bytes.
    ///
    /// This is used to calculate the shift amount for packing this value.
    type Prev: Pack<C>;

    // ====== calculated automatically ========================================

    /// A number consisting of `Self::LEN` 1 bits, starting at the least
    /// significant bit.
    ///
    /// This is the higest value this type can represent. This number is shifted
    /// left by `Self::SHIFT` bits to calculate this type's `MASK`.
    ///
    /// This is computed automatically based on `Self::LEN`.
    const BITS: usize = {
        let shift = 1 << (Self::LEN - 1);
        shift | (shift - 1)
    };
    /// The number of bits to shift a number to pack it into a usize with other
    /// values.
    ///
    /// This is caculated automatically based on the `LEN` and `SHIFT` constants
    /// of the previous value.
    const SHIFT: usize = Self::Prev::SHIFT + Self::Prev::LEN;

    /// The mask to extract only this type from a packed `usize`.
    ///
    /// This is calculated by shifting `Self::BITS` left by `Self::SHIFT`.
    const MASK: usize = Self::BITS << Self::SHIFT;

    fn as_usize(&self) -> usize;
    fn from_usize(val: usize) -> Self;

    #[inline(always)]
    fn pack(&self, to: usize) -> usize {
        let value = self.as_usize();
        debug_assert!(value <= Self::BITS);

        (to & !Self::MASK) | (value << Self::SHIFT)
    }

    #[inline(always)]
    fn from_packed(from: usize) -> Self {
        let value = (from & Self::MASK) >> Self::SHIFT;
        debug_assert!(value <= Self::BITS);
        Self::from_usize(value)
    }
}

impl<C: cfg::Config> Pack<C> for () {
    const BITS: usize = 0;
    const LEN: usize = 0;
    const SHIFT: usize = 0;
    const MASK: usize = 0;

    type Prev = ();

    fn as_usize(&self) -> usize {
        unreachable!()
    }
    fn from_usize(_val: usize) -> Self {
        unreachable!()
    }

    fn pack(&self, _to: usize) -> usize {
        unreachable!()
    }

    fn from_packed(_from: usize) -> Self {
        unreachable!()
    }
}

#[cfg(test)]
pub(crate) use self::tests::util as test_util;

#[cfg(test)]
mod tests;