1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
//! Arithmetic Falcon instructions.

use enum_primitive::FromPrimitive;
use faucon_asm::{Instruction, InstructionKind, Operand, OperandSize};

use super::{utils, Cpu, CpuFlag};

fn sign(x: u32, size: OperandSize) -> bool {
    (x >> (size.value() as u32 - 1) & 1) != 0
}

fn carry(a: bool, b: bool, c: bool) -> bool {
    // If a and b are both set, there is always carry out.
    if a && b {
        return true;
    }

    // One of a and b is set. In this case, there is carry out if
    // the result has bit 0 set.
    if a || b && !c {
        return true;
    }

    // Neither a nor b is set, there is no possibility of carry out.
    false
}

fn overflow(a: bool, b: bool, c: bool) -> bool {
    a == b && a != c
}

/// Compares two operands and stores ALU flags based on the result.
pub fn cmp(cpu: &mut Cpu, insn: &Instruction) -> usize {
    let operands = insn.operands();

    // Extract the instruction operands (register and register or immediate).
    let source1 = utils::get_value(cpu, insn.operand_size(), operands[0]);
    let source2 = utils::get_value(cpu, insn.operand_size(), operands[1]);

    // Subtract the operands and set ALU flags based on the result.
    let diff = source1.wrapping_sub(source2);
    cpu.registers.set_flag(CpuFlag::ZERO, diff == 0);
    match insn.kind() {
        InstructionKind::CMPS => {
            cpu.registers.set_flag(
                CpuFlag::CARRY,
                overflow(
                    sign(source1, insn.operand_size()),
                    !sign(source2, insn.operand_size()),
                    sign(diff, insn.operand_size()),
                ) ^ sign(diff, insn.operand_size()),
            );
        }
        InstructionKind::CMPU => {
            cpu.registers.set_flag(
                CpuFlag::CARRY,
                !carry(
                    sign(source1, insn.operand_size()),
                    !sign(source2, insn.operand_size()),
                    sign(diff, insn.operand_size()),
                ),
            );
        }
        InstructionKind::CMP => {
            cpu.registers.set_flag(
                CpuFlag::CARRY,
                !carry(
                    sign(source1, insn.operand_size()),
                    !sign(source2, insn.operand_size()),
                    sign(diff, insn.operand_size()),
                ),
            );
            cpu.registers.set_flag(
                CpuFlag::OVERFLOW,
                overflow(
                    sign(source1, insn.operand_size()),
                    !sign(source2, insn.operand_size()),
                    sign(diff, insn.operand_size()),
                ),
            );
            cpu.registers
                .set_flag(CpuFlag::NEGATIVE, sign(diff, insn.operand_size()));
        }
        _ => unreachable!(),
    };

    // Signal regular PC increment to the CPU.
    cpu.increment_pc = true;

    1
}

/// Performs an additional or subtraction, based on the instruction, and stores the result.
pub fn addsub(cpu: &mut Cpu, insn: &Instruction) -> usize {
    let operands = insn.operands();

    // Extract the instruction operands (register, register and register or immediate).
    let destination = operands[0];
    let source1 = utils::get_value(cpu, insn.operand_size(), operands[1]);
    let source2 = utils::get_value(cpu, insn.operand_size(), operands[2]);

    // Perform the operation.
    let c = cpu.registers.get_flag(CpuFlag::CARRY) as u32;
    let res = match insn.kind() {
        InstructionKind::ADD => source1.wrapping_add(source2),
        InstructionKind::ADC => source1.wrapping_add(source2).wrapping_add(c),
        InstructionKind::SUB => source1.wrapping_sub(source2),
        InstructionKind::SBB => source1.wrapping_sub(source2).wrapping_sub(c),
        _ => unreachable!(),
    };

    // Store some ALU flags based on the operands and the result.
    match insn.kind() {
        InstructionKind::ADD | InstructionKind::ADC => {
            cpu.registers.set_flag(
                CpuFlag::CARRY,
                carry(
                    sign(source1, insn.operand_size()),
                    sign(source2, insn.operand_size()),
                    sign(res, insn.operand_size()),
                ),
            );
            cpu.registers.set_flag(
                CpuFlag::OVERFLOW,
                overflow(
                    sign(source1, insn.operand_size()),
                    sign(source2, insn.operand_size()),
                    sign(res, insn.operand_size()),
                ),
            );
        }
        InstructionKind::SUB | InstructionKind::SBB => {
            cpu.registers.set_flag(
                CpuFlag::CARRY,
                !carry(
                    sign(source1, insn.operand_size()),
                    !sign(source2, insn.operand_size()),
                    sign(res, insn.operand_size()),
                ),
            );
            cpu.registers.set_flag(
                CpuFlag::OVERFLOW,
                overflow(
                    sign(source1, insn.operand_size()),
                    !sign(source2, insn.operand_size()),
                    sign(res, insn.operand_size()),
                ),
            );
        }
        _ => unreachable!(),
    };

    // Store the result value accordingly.
    utils::write_value_to_reg(cpu, insn.operand_size(), destination, res);

    // Set the remaining ALU flags.
    cpu.registers.set_flag(
        CpuFlag::NEGATIVE,
        sign(cpu.registers[destination], insn.operand_size()),
    );
    cpu.registers
        .set_flag(CpuFlag::ZERO, cpu.registers[destination] == 0);

    // Signal regular PC increment to the CPU.
    cpu.increment_pc = true;

    1
}

/// Carries out a bitwise shift and stores the result.
pub fn shift(cpu: &mut Cpu, insn: &Instruction) -> usize {
    let operands = insn.operands();

    // Extract the instruction operands (register, register and register or immediate).
    let destination = operands[0];
    let source1 = utils::get_value(cpu, insn.operand_size(), operands[1]);
    let mut source2 = utils::get_value(cpu, insn.operand_size(), operands[2]);

    // Truncate source2 accordingly, depending on the operand size.
    match insn.operand_size() {
        OperandSize::EightBit => source2 &= 0x7,
        OperandSize::SixteenBit => source2 &= 0xF,
        OperandSize::ThirtyTwoBit => source2 &= 0x1F,
        _ => unreachable!(),
    };

    // Carry out the operation and store the result.
    let res = match insn.kind() {
        InstructionKind::SHL | InstructionKind::SHLC => {
            let mut result = source1.wrapping_shl(source2);

            if insn.kind() == InstructionKind::SHLC && source2 != 0 {
                result |= (cpu.registers.get_flag(CpuFlag::CARRY) as u32) << (source2 - 1);
            }

            if source2 == 0 {
                cpu.registers.set_flag(CpuFlag::CARRY, false);
            } else {
                cpu.registers.set_flag(
                    CpuFlag::CARRY,
                    (source1 >> (insn.operand_size().value() as u32 - source2) & 1) != 0,
                );
            }

            result
        }
        InstructionKind::SHR | InstructionKind::SAR | InstructionKind::SHRC => {
            let mut result = source1.wrapping_shr(source2);

            if insn.kind() == InstructionKind::SHRC && source2 != 0 {
                result |= (cpu.registers.get_flag(CpuFlag::CARRY) as u32)
                    << (insn.operand_size().value() as u32 - source2);
            } else if insn.kind() == InstructionKind::SAR && sign(source1, insn.operand_size()) {
                result |= !0 << (insn.operand_size().value() as u32 - source2);
            }

            if source2 == 0 {
                cpu.registers.set_flag(CpuFlag::CARRY, false);
            } else {
                cpu.registers
                    .set_flag(CpuFlag::CARRY, ((source2 - 1) & 1) != 0);
            }

            result
        }
        _ => unreachable!(),
    };

    // Store the result value accordingly.
    utils::write_value_to_reg(cpu, insn.operand_size(), destination, res);

    // Set the remaining ALU flags.
    cpu.registers.set_flag(CpuFlag::OVERFLOW, false);
    cpu.registers.set_flag(
        CpuFlag::NEGATIVE,
        sign(cpu.registers[destination], insn.operand_size()),
    );
    cpu.registers
        .set_flag(CpuFlag::ZERO, cpu.registers[destination] == 0);

    // Signal regular PC increment to the CPU.
    cpu.increment_pc = true;

    1
}

/// Performs a unary binary operation.
pub fn unary(cpu: &mut Cpu, insn: &Instruction) -> usize {
    let operands = insn.operands();

    // Extract the instruction operands (register and immediate).
    let destination = operands[0];
    let source = utils::get_value(cpu, insn.operand_size(), operands[1]);

    // Carry out the operation and store the result.
    match insn.kind() {
        InstructionKind::NOT => {
            cpu.registers[destination] = !source;
            cpu.registers.set_flag(CpuFlag::OVERFLOW, false);
        }
        InstructionKind::NEG => {
            cpu.registers[destination] = source.wrapping_neg();
            cpu.registers.set_flag(
                CpuFlag::OVERFLOW,
                cpu.registers[destination] == (1 << (insn.operand_size().value() - 1)) as u32,
            );
        }
        InstructionKind::HSWAP => {
            cpu.registers[destination] = source >> (insn.operand_size().value() / 2) as u32
                | source << (insn.operand_size().value() / 2) as u32;
            cpu.registers
                .set_flag(CpuFlag::OVERFLOW, cpu.registers[destination] == 0);
        }

        _ => unreachable!(),
    };

    // Set the remaining ALU flags.
    cpu.registers.set_flag(
        CpuFlag::NEGATIVE,
        sign(cpu.registers[destination], insn.operand_size()),
    );
    cpu.registers
        .set_flag(CpuFlag::ZERO, cpu.registers[destination] == 0);

    // Signal regular PC increment to the CPU.
    cpu.increment_pc = true;

    1
}

/// Sets the high 16 bits of a register ot a given value.
pub fn sethi(cpu: &mut Cpu, insn: &Instruction) -> usize {
    let operands = insn.operands();

    // Extract the instruction operands (register and immediate).
    let destination = operands[0];
    let source = utils::get_value(cpu, insn.operand_size(), operands[1]);

    // Store the source value in the high 16 bits of the destination register.
    cpu.registers[destination] = cpu.registers[destination] & 0xFFFF | source << 0x10;

    // Signal regular PC increment to the CPU.
    cpu.increment_pc = true;

    1
}

/// Clears a given CPU register.
pub fn clear(cpu: &mut Cpu, insn: &Instruction) -> usize {
    // Extract the instruction operands (a single register).
    let destination = insn.operands()[0];

    // Clear the register.
    cpu.registers[destination] = 0;

    // Signal regular PC increment to the CPU.
    cpu.increment_pc = true;

    1
}

/// Multiplies two operands and stores the result.
pub fn mul(cpu: &mut Cpu, insn: &Instruction) -> usize {
    let operands = insn.operands();

    // Extract the instruction operands (register, register and register or immediate).
    let destination = operands[0];
    let mut source1 = utils::get_value(cpu, insn.operand_size(), operands[1]) & 0xFFFF;
    let mut source2 = utils::get_value(cpu, insn.operand_size(), operands[2]) & 0xFFFF;

    // If the instruction is MULS, sign-extend the operands properly.
    if insn.kind() == InstructionKind::MULS {
        if source1 & 0x8000 != 0 {
            source1 |= 0xFFFF0000;
        }
        if source2 & 0x8000 != 0 {
            source2 |= 0xFFFF0000;
        }
    }

    // Perform the multiplication and store the result.
    cpu.registers[destination] = source1.wrapping_mul(source2);

    // Signal regular PC increment to the CPU.
    cpu.increment_pc = true;

    1
}

/// Performs a sign-extension of the given operand.
pub fn sext(cpu: &mut Cpu, insn: &Instruction) -> usize {
    let operands = insn.operands();

    // Extract the instruction operands (register, register and register or immediate).
    let destination = operands[0];
    let source1 = utils::get_value(cpu, insn.operand_size(), operands[1]);
    let source2 = utils::get_value(cpu, insn.operand_size(), operands[2]);

    // Perform the sign-extension and store the result.
    let bit = source2 & 0x1F;
    if source1 & 1 << bit != 0 {
        cpu.registers[destination] = source1 & ((1 << bit) - 1) | (-(1 << bit as i32)) as u32;
    } else {
        cpu.registers[destination] = source1 & ((1 << bit) - 1);
    }

    // Store the CPU flags accordingly.
    cpu.registers.set_flag(
        CpuFlag::NEGATIVE,
        sign(cpu.registers[destination], insn.operand_size()),
    );
    cpu.registers
        .set_flag(CpuFlag::ZERO, cpu.registers[destination] == 0);

    // Signal regular PC increment to the CPU.
    cpu.increment_pc = true;

    1
}

/// Performs a bitwise operation on two operands and stores the result.
pub fn bitwise(cpu: &mut Cpu, insn: &Instruction) -> usize {
    let operands = insn.operands();

    // Extract the instruction operands (register, register and register or immediate).
    let destination = operands[0];
    let source1 = utils::get_value(cpu, insn.operand_size(), operands[1]);
    let source2 = utils::get_value(cpu, insn.operand_size(), operands[2]);

    // Perform the calculation and store the result.
    match insn.kind() {
        InstructionKind::AND => cpu.registers[destination] = source1 & source2,
        InstructionKind::OR => cpu.registers[destination] = source1 | source2,
        InstructionKind::XOR => cpu.registers[destination] = source1 ^ source2,
        _ => unreachable!(),
    };

    // Set CPU flags accordingly.
    cpu.registers.set_flag(CpuFlag::CARRY, false);
    cpu.registers.set_flag(CpuFlag::OVERFLOW, false);
    cpu.registers.set_flag(
        CpuFlag::NEGATIVE,
        sign(cpu.registers[destination], insn.operand_size()),
    );
    cpu.registers
        .set_flag(CpuFlag::ZERO, cpu.registers[destination] == 0);

    // Signal regular PC increment to the CPU.
    cpu.increment_pc = true;

    1
}

/// Modifies a bit in a register.
pub fn xbit(cpu: &mut Cpu, insn: &Instruction) -> usize {
    let operands = insn.operands();

    // Extract the instruction operands (register, register, immediate/register/flag).
    let destination = operands[0];
    let source1 = operands[1];
    let source2 = operands[2];

    // Set the bit accordingly.
    let bit = match source2 {
        Operand::Register(reg) => cpu.registers[reg] & 0x1FF,
        Operand::Flag(flag) => flag as u32,
        Operand::Immediate(imm) => imm as u32 & 0x1FF,
        _ => unreachable!(),
    };
    cpu.registers[destination] = cpu.registers[source1] >> bit & 1;

    // Set the ALU flags accordingly.
    cpu.registers.set_flag(CpuFlag::NEGATIVE, false);
    cpu.registers
        .set_flag(CpuFlag::ZERO, cpu.registers[destination] == 0);

    // Signal regular PC increment to the CPU.
    cpu.increment_pc = true;

    1
}

/// Modifies a given bit in a register.
pub fn bitop(cpu: &mut Cpu, insn: &Instruction) -> usize {
    let operands = insn.operands();

    // Extract the instruction operands (register and register or immediate).
    let destination = operands[0];
    let source = operands[1];

    // Extract the bit and perform the operation.
    let bit = match source {
        Operand::Register(reg) => cpu.registers[reg] & 0x1FF,
        Operand::Flag(flag) => flag as u32,
        Operand::Immediate(imm) => imm as u32 & 0x1FF,
        _ => unreachable!(),
    };

    match insn.kind() {
        InstructionKind::BSET => cpu.registers[destination] |= 1 << bit,
        InstructionKind::BCLR => cpu.registers[destination] &= !(1 << bit),
        InstructionKind::BTGL => cpu.registers[destination] ^= 1 << bit,
        _ => unreachable!(),
    };

    // Signal regular PC increment to the CPU.
    cpu.increment_pc = true;

    1
}

/// Performs a division or takes the modulus of two operands.
pub fn divmod(cpu: &mut Cpu, insn: &Instruction) -> usize {
    let operands = insn.operands();

    // Extract the instruction operands (register, register and register or immediate).
    let destination = operands[0];
    let source1 = utils::get_value(cpu, insn.operand_size(), operands[1]);
    let source2 = utils::get_value(cpu, insn.operand_size(), operands[2]);

    // Divide both operands and handle unsupported divisions by zero.
    let div_result = if source2 == 0 {
        0xFFFFFFFF
    } else {
        source1 / source2
    };

    // Finalize the operation and store the result accordingly to the instruction.
    match insn.kind() {
        InstructionKind::DIV => cpu.registers[destination] = div_result,
        InstructionKind::MOD => cpu.registers[destination] = source1 - div_result * source2,
        _ => unreachable!(),
    };

    // Signal regular PC increment to the CPU.
    cpu.increment_pc = true;

    30
}

/// Sets a specific CPU flag to a given value.
pub fn setp(cpu: &mut Cpu, insn: &Instruction) -> usize {
    let operands = insn.operands();

    // Extract the instruction operands (register or flag and register).
    let source1 = operands[0];
    let source2 = operands[1];

    // Get the bit in question and determine the value to set it to.
    let value = cpu.registers[source2] & 1 != 0;
    let flag = if insn.opcode() == 0xF2 {
        utils::parse_flag(source1).unwrap()
    } else {
        CpuFlag::from_u32(cpu.registers[source1] & 0x1F).unwrap()
    };

    // Set the bit accordingly.
    cpu.registers.set_flag(flag, value);

    // Signal regular PC increment to the CPU.
    cpu.increment_pc = true;

    1
}